Membrane lipid saturation activates endoplasmic reticulum unfolded protein response transducers through their transmembrane domains.
نویسندگان
چکیده
Endoplasmic reticulum (ER) stress sensors use a related luminal domain to monitor the unfolded protein load and convey the signal to downstream effectors, signaling an unfolded protein response (UPR) that maintains compartment-specific protein folding homeostasis. Surprisingly, perturbation of cellular lipid composition also activates the UPR, with important consequences in obesity and diabetes. However, it is unclear if direct sensing of the lipid perturbation contributes to UPR activation. We found that mutant mammalian ER stress sensors, IRE1α and PERK, lacking their luminal unfolded protein stress-sensing domain, nonetheless retained responsiveness to increased lipid saturation. Lipid saturation-mediated activation in cells required an ER-spanning transmembrane domain and was positively regulated in vitro by acyl-chain saturation in reconstituted liposomes. These observations suggest that direct sensing of the lipid composition of the ER membrane contributes to the UPR.
منابع مشابه
Generic membrane-spanning features endow IRE1α with responsiveness to membrane aberrancy
Altered cellular lipid composition activates the endoplasmic reticulum unfolded protein response (UPR), and UPR signaling effects important changes in lipid metabolism. Secondary effects on protein folding homeostasis likely contribute to UPR activation, but deletion of the unfolded protein stress-sensing luminal domain of the UPR transducers PERK and IRE1α does not abolish their responsiveness...
متن کاملLipid-dependent regulation of the unfolded protein response
Protein folding homeostasis in the lumen of the endoplasmic reticulum is defended by signal transduction pathways that are activated by an imbalance between unfolded proteins and chaperones (so called ER stress). Collectively referred to as the unfolded protein response (UPR) this homeostatic response is initiated by three known ER stress transducers: IRE1, PERK and ATF6. These ER-localised tra...
متن کاملChronic endoplasmic reticulum stress activates unfolded protein response in arterial endothelium in regions of susceptibility to atherosclerosis.
RATIONALE Endothelial function and dysfunction are central to the focal origin and regional development of atherosclerosis; however, an in vivo endothelial phenotypic footprint of susceptibility to atherosclerosis preceding pathological change remains elusive. OBJECTIVE To conduct a comparative multi-site genomics study of arterial endothelial phenotype in atherosusceptible and atheroprotecte...
متن کاملMembrane aberrancy and unfolded proteins activate the endoplasmic reticulum stress sensor Ire1 in different ways
Eukaryotic cells activate the unfolded-protein response (UPR) upon endoplasmic reticulum (ER) stress, where the stress is assumed to be the accumulation of unfolded proteins in the ER. Consistent with previous in vitro studies of the ER-luminal domain of the mutant UPR initiator Ire1, our study show its association with a model unfolded protein in yeast cells. An Ire1 luminal domain mutation th...
متن کاملRecent insights into PERK-dependent signaling from the stressed endoplasmic reticulum
The unfolded protein response (UPR) is an evolutionarily conserved stress response to intra- and extracellular conditions that disrupt endoplasmic reticulum (ER) protein-folding capacity. The UPR is engaged by a variety of disease conditions, including most cancers as well as both metabolic and neurodegenerative disorders. Three transmembrane transducers-PERK, IRE1, and ATF6-are responsible for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 110 12 شماره
صفحات -
تاریخ انتشار 2013